Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 393: 130142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049020

RESUMO

Microbial engineering is a promising way to produce3-HP using biorenewable substrates such as glycerol. However, theglycerol pathway to obtain 3-HPrequires vitamin B-12, which hinders its economic viability. The present work showed that 3-HP can be efficiently produced from glycerol through the ß-alanine pathway. To develop a cell factory for this purpose, glycerol was evaluated as a substrate and showed more than two-fold improved 3-HP production compared to glucose. Next, the reducing power was modulated by overexpression of an NADP+ -dependent glyceraldehyde-3-phosphate dehydrogenase coupled with CRISPR-based repression of the endogenous gapA gene, resulting in a 91 % increase in 3-HP titer. Finally, the toxicity of 3-HP accumulation was addressed by overexpressing a putative exporter (YohJK). Fed-batch cultivation of the final strain yielded 72.2 g/L of 3-HP and a productivity of 1.64 g/L/h, which are the best results for the ß-alanine pathway and are similar to those found for other pathways.


Assuntos
Escherichia coli , Glicerol , Ácido Láctico/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Glicerol/metabolismo , NADP/metabolismo , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Engenharia Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...